Radioresistance of chordoma cells is associated with the ATM/ATR pathway, in which RAD51 serves as an important downstream effector
نویسندگان
چکیده
Surgery followed by radiotherapy is the standard treatment for chordomas, which are a rare but low-grade type of bone cancer arising from remnants of the embryonic notochord. However, disease recurrence following radiotherapy is common, most likely due to endogenous DNA repair mechanisms that promote cell survival upon radiation strikes. The ataxia telangiectasia mutated/ataxia telangiectasia mutated and Rad3 related (ATM/ATR)-mediated pathway has a critical role in DNA repair mechanisms; however, it has rarely been investigated in chordomas. In the present study, the expression of signal molecules related to the ATM/ATR pathway in chordoma tissues and adjacent normal tissues were initially examined using immunohistochemistry and western blot analysis. Chordoma U-CH1 and U-CH2 cells were subsequently used to investigate cell responses to ionizing radiation and the potential protective actions mediated by the ATM/ATR pathway. Phosphorylated (p)-ATM, p-ATR, γ-H2A histone family, member X (H2AX) and RAD51 were significantly upregulated in chordoma tissues relative to adjacent normal tissues (P<0.05). No significant reductions were observed in the viability of U-CH1 and U-CH2 cells following exposure to low-dose (1 and 2 Gy) radiation. Radiation (1 and 2 Gy) triggered a significant upregulation in p-ATM, γ-H2AX and RAD51 expression in U-CH1 cells (P<0.05), as well as a significant upregulation in p-ATM, p-ATR and RAD51 levels in U-CH2 cells (P<0.05). RAD51 knockdown increased the responses of both U-CH1 and U-CH2 cells to 1 Gy radiation, as evidenced by the significantly decreased cell viability and increased apoptosis rate (P<0.05). Collectively, the results of the present study indicated that radioresistance of chordoma cells is associated with the ATM/ATR pathway, in which RAD51 serves as an important downstream effector. Thus, RAD51 presents a promising therapeutic target for improving the outcome of radiotherapy treatment in chordomas.
منابع مشابه
The role of Rad51 protein in radioresistance of spheroid model of DU145 prostate carcinoma cell line
Background: Rad51 is a protein with critical role in double strand break repair. Down-regulation of this protein has a significant effect in radiosensitivity of some cell lines like prostate carcinoma. Compared to monolayer cell culture model, the spheroids are more resistant to radiation. The aim of the current study was to determine the Rad51 protein level in DU145 spheroids, and monol...
متن کاملATM induces radioresistance of non-small cell lung cancer A549 cells by downregulation of MDMX
Background: Tumor radioresistance leads to a reduction in the efficiency of radiation therapy. It is very important to explore the cellular mechanisms leading to radioresistance and to find potential therapeutic targets, which might improve the efficacy of radiation therapy. This study was to investigate the role of ataxia-telangiectasia mutated (ATM) and murine double minute X (MDMX) in radior...
متن کاملRad51 Expression in Nasopharyngeal Carcinoma and Its Association with Tumor Reduction: A Preliminary Study in Indonesia
Background: Overexpression of Rad51 protein in many tumor cells has been proven to increase radioresistance and can be related to the resistance of chemosensitivity of tumor cells. This preliminary study was conducted to determine the relationship between the Rad51 expression level in nasopharyngeal carcinoma and the response of the treatment based on the measurement o...
متن کاملInduction of ATM/ATR pathway combined with Vγ2Vδ2 T cells enhances cytotoxicity of ovarian cancer cells.
Many ovarian cancer cells express stress-related molecule MICA/B on their surface that is recognized by Vγ2Vδ2 T cells through their NKG2D receptor, which is transmitted to downstream stress-signaling pathway. However, it is yet to be established how Vγ2Vδ2 T cell-mediated recognition of MICA/B signal is transmitted to downstream stress-related molecules. Identifying targeted molecules would be...
متن کاملAnalysis of Exon 19 and 39 of ATM Gene in Brain Tumors; Considering the P53 Accumulation
Many studies have been focused on cytogenetic and molecular genetic defects in brain tumors; therefore the role of ATM as a tumor suppressor gene in these tumors is poorly considered. In this study mutation analysis of exon 19 and 39 of ATM gene and P53 accumulation were investigated by PCR-SSCP, sequencing, and flow cytometry . Four polymorphisms including D1853N, IVS 38-8 T?C, F858L, P872T we...
متن کامل